北京赛车-Welcome热购

pk10精准计划

发布者窟宛电:文明办发布时间堆深邻:2019-04-12浏览次数妙啡快狼:10


主讲人彻围刨腹蛙覆:文晓 北京航天航空大学 副教授


时间幸结踌躺:2019年4月15日9毖侧别羞:45


地点蚊骄恰徊:徐汇校区三号楼332


举办单位杰苯痹抄汝腑:数理学院


内容介绍袄蟹飞秸:Pilyugin and Tikhomirov proved that Lipschitz shadowing property implies the  structural stability and Todorov proved a similar result that a Lipschitz  two-sided limit shdowing property also implies structural stability for  diffeomorpshisms. In this talk, we define a general type of the Lipschitz  shadowing property which covers the previous two kinds of Lipschitz shadowing  property, and prove that if a diffeomorphism $f$ of a compact smooth manifold  $M$ has this general type of the Lipschitz shadowing property then it is  structurally stable. This is a joint work with Manseob Lee and Jumi Oh.

北京赛车